Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38392657

RESUMEN

Direct air capture (DAC) is an emerging negative CO2 emission technology that aims to introduce a feasible method for CO2 capture from the atmosphere. Unlike carbon capture from point sources, which deals with flue gas at high CO2 concentrations, carbon capture directly from the atmosphere has proved difficult due to the low CO2 concentration in ambient air. Current DAC technologies mainly consider sorbent-based systems; however, membrane technology can be considered a promising DAC approach since it provides several advantages, e.g., lower energy and operational costs, less environmental footprint, and more potential for small-scale ubiquitous installations. Several recent advancements in validating the feasibility of highly permeable gas separation membrane fabrication and system design show that membrane-based direct air capture (m-DAC) could be a complementary approach to sorbent-based DAC, e.g., as part of a hybrid system design that incorporates other DAC technologies (e.g., solvent or sorbent-based DAC). In this article, the ongoing research and DAC application attempts via membrane separation have been reviewed. The reported membrane materials that could potentially be used for m-DAC are summarized. In addition, the future direction of m-DAC development is discussed, which could provide perspective and encourage new researchers' further work in the field of m-DAC.

2.
MethodsX ; 8: 101485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434883

RESUMEN

Hydrogen peroxide is commonly used as a sterilizing agent for medical devices and its use has recently been extended to N95 masks during PPE shortages as a result of the COVID-19 pandemic. The hydrogen peroxide remaining on the masks after sterilization could potentially pose a health hazard to the mask users. In the present study a colorimetric method was optimized for the determination of hydrogen peroxide on N95 masks following chemical sanitizations. The developed analytical method demonstrated an overall recovery of 98% ± 7%. The limit of detection ranged from 0.16 to 0.25 mg/mask, depending on the type of mask. The expanded measurement uncertainty was 13% (at a 95% confidence interval). The sanitization process itself introduced a significant variation in hydrogen peroxide load between masks. The ozone used in the sanitization process had no significant impact on analytical performance. Stamped and printed marks on the mask surfaces could induce biased readings. Hydrogen peroxide decomposes quickly on the mask surfaces so timing of analysis is an important factor in method standardization.•The validation data demonstrated that the in-house method is reliable and fit for the intended purpose, offering a sensitive, simple, rapid, and inexpensive method of residue monitoring.

3.
Nanoscale ; 6(4): 2328-39, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24418869

RESUMEN

A systematic study on the use of 9,9-dialkylfluorene homopolymers (PFs) for large-diameter semiconducting (sc-) single-walled carbon nanotube (SWCNT) enrichment is the focus of this report. The enrichment is based on a simple three-step extraction process: (1) dispersion of as-produced SWCNTs in a PF solution; (2) centrifugation at a low speed to separate the enriched sc-tubes; (3) filtration to collect the enriched sc-SWCNTs and remove excess polymer. The effect of the extraction conditions on the purity and yield including molecular weight and alkyl side-chain length of the polymers, SWCNT concentration, and polymer/SWCNT ratio have been examined. It was observed that PFs with alkyl chain lengths of C10, C12, C14, and C18, all have an excellent capability to enrich laser-ablation sc-SWCNTs when their molecular weight is larger than ∼10 000 Da. More detailed studies were therefore carried out with the C12 polymer, poly(9,9-di-n-dodecylfluorene), PFDD. It was found that a high polymer/SWCNT ratio leads to an enhanced yield but a reduced sc-purity. A ratio of 0.5-1.0 gives an excellent sc-purity and a yield of 5-10% in a single extraction as assessed by UV-vis-NIR absorption spectra. The yield can also be promoted by multiple extractions while maintaining high sc-purity. Mechanistic experiments involving time-lapse dispersion studies reveal that m-SWCNTs have a lower propensity to be dispersed, yielding a sc-SWCNT enriched material in the supernatant. Dispersion stability studies with partially enriched sc-SWCNT material further reveal that m-SWCNTs : PFDD complexes will re-aggregate faster than sc-SWCNTs : PFDD complexes, providing further sc-SWCNT enrichment. This result confirms that the enrichment was due to the much tighter bundles in raw materials and the more rapid bundling in dispersion of the m-SWCNTs. The sc-purity is also confirmed by Raman spectroscopy and photoluminescence excitation (PLE) mapping. The latter shows that the enriched sc-SWCNT sample has a narrow chirality and diameter distribution dominated by the (10,9) species with d = 1.29 nm. The enriched sc-SWCNTs allow a simple drop-casting method to form a dense nanotube network on SiO2/Si substrates, leading to thin film transistors (TFTs) with an average mobility of 27 cm(2) V(-1) s(-1) and an average on/off current ratio of 1.8 × 10(6) when considering all 25 devices having 25 µm channel length prepared on a single chip. The results presented herein demonstrate how an easily scalable technique provides large-diameter sc-SWCNTs with high purity, further enabling the best TFT performance reported to date for conjugated polymer enriched sc-SWCNTs.


Asunto(s)
Polímeros de Fluorocarbono/química , Dióxido de Silicio/química , Silicio/química , Transistores Electrónicos , Espectrometría Raman
4.
Nat Mater ; 10(5): 372-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460822

RESUMEN

Microporous organic polymers (MOPs) are of potential significance for gas storage, gas separation and low-dielectric applications. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO(2) separation performance, even under polymer plasticization conditions such as CO(2)/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO(2) sorption with superior affinity in gas mixtures, and selective CO(2) transport by presorbed CO(2) molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO(2) capture processes.

5.
J Am Chem Soc ; 127(14): 5038-9, 2005 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-15810836

RESUMEN

Reaction of [Pt(CH3)2(COD)] (COD = 1,5-cyclooctadiene) with Ph2PCCCCPPh2 led to a mixture of [{Pt(CH3)2}2(mu-Ph2PC4PPh2)2] (1) and [{Pt(CH3)2}3(mu-Ph2PC4PPh2)3] (2). Reaction of [PtCl2(COD)] with Ph2PCCCCPPh2 led to a mixture of the thermally unstable compounds [{PtCl2}2(mu-Ph2PC4PPh2)2] (3) and [{PtCl2}3(mu-Ph2PC4PPh2)3] (4) which transform into [{PtMe2}2{mu-C8(PPh2)4}] (5) and [{PtMe2}3{mu3-C12(PPh2)6}] (6) containing 8-membered diene-diyne and 12-membered triene-triyne rings, respectively. Compound 2 can be converted to [{PtMe2}3{C12(PPh2)6}] (7) by heating with CuCl at 80 degrees C, while 1 can be heated without significant cycloaddition.

6.
Inorg Chem ; 44(8): 2766-73, 2005 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-15819564

RESUMEN

Acid hydrolysis of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) or protonation of the anionic PO cluster [Ru(5)(CO)(15)(mu(4)-PO)](-) (3) affords the hydroxyphosphinidene complex [Ru(5)(CO)(15)(mu(4)-POH)].1.[H(2)N(i)()Pr(2)][CF(3)SO(3)], which cocrystallizes with a hydrogen-bonded ammonium triflate salt. Reaction of [Ru(5)(CO)(15)(mu(4)-PN(i)Pr(2))] (2) with bis(diphenylphosphino)methane (dppm) leads to [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PN(i)Pr(2))] (4). Acid hydrolysis of 4 leads to the dppm-substituted hydroxyphosphinidene [Ru(5)(CO)(13)(mu-dppm)(mu(4)-POH)] (5), which is analogous to 1, but unlike 1, can be readily isolated as the free hydroxyphosphinidene acid. Compound 5 can also be formed by reaction of 3 with dppm and acid. The cationic hydride cluster [Ru(5)(CO)(13)(mu-dppm)(mu(3)-H)(mu(4)-POH)][CF(3)SO(3)] (6) can be isolated from the same reaction if chromatography is not used. Compound 4 also reacts with HBF(4) to form the fluorophosphinidene cluster [Ru(5)(CO)(13)(mu-dppm)(mu(4)-PF)] (7), while reaction with HCl leads to the mu-chloro, mu(5)-phosphide cluster [Ru(5)(CO)(13)(mu-dppm)(mu-Cl)(mu(5)-P)] (8).

7.
Inorg Chem ; 42(19): 6041-9, 2003 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-12971775

RESUMEN

The syntheses of two distinctive types of indium complex derived from trimethylindium (InMe(3)) are reported. The first kind has a generalized structural formula [InMe(2)(amak)](2), where (amak)H is an abbreviation for a series of chelating amino alcohol ligands HOC(CF(3))(2)CH(2)NHR, R = (CH(2))(2)OMe (1), Me (2), and Bu(t) (3), as well as HOC(CF(3))(2)CH(2)NMe(2) (4); while the second type of complex is illustrated by [InMe(2)(keim)] (5), for which (keim)H is a tridentate ketoimine ligand of structural formula O=C(CF(3))CH(2)C(CF(3))=NCH(2)CH(2)NMe(2). The solid-state structures of 2 and 5 were determined using single crystal X-ray diffraction studies. For the aminoalkoxide complexes 2-4, the existence of dimeric In(2)O(2) core structures in the solid state has been established with the amino fragment located trans to the alkoxide ligands, in a molecular arrangement which is in contrast to the distorted, trigonal bipyramidal geometry observed for the ketoiminate complex 5. Moreover, VT NMR studies of 2 revealed a rapid dimer-to-monomer equilibration and simultaneous rupture of the N-->In dative interaction, affording two interconvertible isomers related by having the N-Me substituents in either trans or cis dispositions. For complexes 2 and 5, deposition of In(2)O(3) thin films was successfully conducted at temperatures 400-500 degrees C, using O(2) as the carrier gas to induce indium oxide deposition and to suppress carbon impurity present in the thin film. Scanning electron micrographs (SEMs) revealed the surface morphologies. The atomic composition of these films was examined by both X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering (RBS) methods, while X-ray diffraction studies (XRD) confirmed the formation of a preferred orientation along the (222) planes.

8.
Chem Commun (Camb) ; (4): 320-1, 2002 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12120054

RESUMEN

Reaction of the aminophosphinidene complex [Ru5(CO)15(mu 4-PNPri2)] 1 with [PPN][NO2] (PPN = Ph3P=N=PPh3) led to the mixed nitrosyl/phosphinidene cluster complex [PPN][Ru5(CO)13(mu-NO)(mu 4-PNPri2)] 2 which is transformed into the novel nitrene/phosphinidene cluster [Ru5(CO)10(mu-CO)2(mu 3-CO)(mu 4-NH)(mu 3-PNPri2)] 3 via treatment with triflic acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...